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Crystal structure prediction (CSP) is the problem of determining

the most stable crystalline arrangements of materials given

their chemical compositions. In general, CSP methodologies

include two algorithmic steps, namely a method for assessing

material stability of any given design, and a search algorithm for

exploring the design space. For inorganic crystals, in particular,

the most critical aspect is to develop an effective search

algorithm. This paper summarizes previous research and

discusses recent progress in search methods developed for

inorganic CSP. Empirical methods, guided-sampling

algorithms, and more recent data-driven approaches are

discussed. Additionally, we describe a mathematical

optimization-based search paradigm that has been recently

introduced as an alternative CSP approach. A semiconductor

nanowire design approach is then presented to illustrate this

paradigm.
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Introduction
Crystal structure prediction (CSP) pertains to identifying

the most stable structures of given classes of crystalline

materials. The stability metric for CSP is often defined

via a complex energy function, such as a potential energy

surface, while in certain cases, other more straightforward

metrics such as the structure’s cohesive energy may be

used instead. CSP is fundamentally important for materi-

als research and application, as the predicted most stable

crystal structure is often used to guide the experimental

synthesis and other theoretical studies. Indeed, even with

solely the crystal structure information at hand, we can

calculate many physical and chemical properties of crys-

talline materials using ab initio or machine learning
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methods [1]. In addition, CSP plays a critical role in

crystal engineering and, more broadly, in the inverse

design of crystalline materials, enabling us to design

materials with desired properties. Clearly, the ability to

perform accurate, efficient, and robust CSP is key to next-

generation technologies in energy transformation and

storage, catalysis, and quantum computing [2��].

There are two major pieces in CSP methodologies,

namely the means to assess the stability of a given

structure, and the process to search over the space of

possible structures. First, using some appropriate stability

assessment method (a.k.a. stability ranking), we seek to

obtain an estimate of relative stability between all candi-

date structures in terms of a defined stability metric. The

structure search step then explores the structural design

space and identifies the structures that correspond to the

optima of the stability metric function. Whereas the

stability ranking problem is usually tackled with existing

computational chemistry tools for predicting material

properties, the structure search step often involves the

development of custom-built algorithmic procedures to

numerically zero in the most promising structures.

Historically, there is a parallelism between inorganic and

organic CSP research. The stability ranking problem has

attracted more research attention in the organic CSP

community, while the inorganic CSP community has

focused more efforts on structure search algorithms. This

could be partially explained by the difference between ab
initio computational tools utilized by those two commu-

nities. Whereas organic materials’ properties can often be

obtained from fast but less accurate Monte-Carlo simula-

tions or molecular dynamics calculations, computational

studies for inorganic materials usually involve accurate

but more expensive quantum-mechanics calculations.

Thus, the organic CSP community has focused more

on improving the underlying force fields for more accu-

rate stability ranking, while the inorganic CSP commu-

nity has devoted more time on advanced search methods

to reduce computational cost and/or function evaluations

required for the structure search problem. Furthermore,

organic crystalline materials can usually be expressed via

modular building blocks (e.g. molecules), resulting in

much smaller structural design spaces than then case of

inorganic materials, where often the structure needs to be

expressed at the atom level. In fact, enumerative search

algorithms are often viable means for CSP of certain

classes of organic materials. On the other hand, the search

space of inorganic CSP is generally astronomically large.
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For example, a target periodic unit cell with K atoms will

possess at least 3K þ 3 degrees of freedom1, even without

considering the types of atoms. It is estimated that there

are at least 10K potential structure candidates for such a

system, as approximated by Oganov and Glass [3�]. The

exponential increase of design space with respect to

system size makes the inorganic CSP search problem a

very challenging combinatorial optimization problem,

which necessitates systematic algorithms to explore and

reduce the design space efficiently. In this review, we will

specifically focus on inorganic materials CSP search

methods. For organic CSP search methodologies, we refer

the readers to Bowskill et al. [4��] for a comprehensive

overview.

Screening all candidate structures is inefficient and costly.

Two major categories of systematic search algorithms

have thus been developed for inorganic CSP, namely

the guided sampling approaches and the data-driven

approaches. The earliest data-driven methods were

developed in the form of empirical rules that exploited

analogies between structures. Later on, many meta-heur-

istics based sampling algorithms (e.g. simulated anneal-

ing, genetic algorithms, particle swarm optimization)

were proposed and employed to solve inorganic CSP

search problems. More recently, data-driven methods

have again become the research hotspot given all the

advancements in machine learning and deep learning

algorithms. Additionally, hybrid frameworks have been

developed where meta-heuristics and data-driven

approaches are combined. A brief summary of CSP search

methods for inorganic materials is provided in Table 1,

while more detailed discussions along with references are

provided in the remainder of the manuscript. More spe-

cifically, in the section ‘Guided-sampling methods’, we

discuss guided sampling search methods previously

developed for inorganic CSP, including random sampling,

simulated annealing, and evolutionary algorithms. Next,

in the section ‘Data-driven methods’ we discuss recent

progress in applying advanced data-driven techniques

and models in inorganic CSP. Finally, in the section

‘Mathematical optimization’, we introduce a mathemati-

cal optimization-based materials design paradigm that has

been recently developed as an alternative CSP approach

for inorganic materials. We illustrate this paradigm using a

case study of designing stable semiconductor nanowires.

Guided-sampling methods
As mentioned earlier, the design space of an inorganic

CSP problem is prohibitively large for enumerative

screening. To reduce the computational cost, a straight-

forward idea is to sample candidate structures from the

design space iteratively, hoping that one of the sampled

structures would be the optimally stable one. Such guided
1 Six lattice parameters plus the shift-invariant xyz-coordinates of

the atoms, that is, 6 þ 3ðK � 1Þ degrees of freedom.
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sampling methods have been practiced in various material

systems and proved to provide sufficiently good solutions

in many cases. Two key methodological steps are

involved in designing a sampling-based search method.

The first step pertains to sampling from the design space

(i.e. generating new structure candidates), and it is usually

performed by a material class-specific heuristic that is

developed to that purpose. The second step is tasked

with guiding the sampling process and involves starting,

stopping and tuning the search. For this, meta-heuristic

frameworks are often deployed. In the following, we will

discuss several popular generic meta-heuristics in the

literature that can couple with materials-specific heuris-

tics for inorganic CSP.

The simplest approach is random sampling. This term is

used to describe a random walk-like procedure where the

sampling is purely random, storing the best solution

encountered in the process thus far. Although primitive,

random sampling has proven to be a sufficiently good

algorithm in a series of practical applications, as illustrated

by Pickard and Needs [5–8]. Their methodology, called

the ab initio random structure searching (AIRSS), is summa-

rized and described systematically in [9�]. We note that

random sampling is more widely used in the organic CSP

community for reasons discussed earlier. For example,

purely random, grid-based, or more involved quasi-ran-

dom sampling have all been shown to perform well in

blind tests of organic CSP [10,11].

Inorganic CSP search problems often require more effi-

cient search methods. To that end, several nature-

inspired meta-heuristic frameworks have been success-

fully utilized for inorganic CSP. Simulated annealing (SA)

is one of the earliest developed and widely applied

sampling algorithms. It was inspired by the physical

annealing process and first proposed by Kirkpatrick

et al. [12] to address classic combinatorial optimization

problems. It was then soon utilized for framework mate-

rials CSP [13] and dense-packed materials CSP [14].

Later, [15] carried out a series of SA-based inorganic

CSP studies for different material systems, with their

methodology systematically described in [16]. The cost

functions used in those studies are usually empirical or

theoretically derived potential energy surfaces (PES) that

are highly non-convex and have lots of local minima,

which reduces the search efficiency of SA.

Finnila et al. [17] proposed quantum annealing, which

performs SA on the quantum mechanics characteristics of

nanoclusters to avoid local minima. Reinaudi et al. [18,19]

imposed symmetry restrictions to decrease the number of

local minima. Another technique to improve the effi-

ciency of the search process is the basin-hopping tech-

nique, which transforms the PES surface into a set of

basins without changing the global minimum [20,21].

Mellot-Draznieks et al. [22–25] proposed the automated
www.sciencedirect.com
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Table 1

Summary of search methods for inorganic materials CSP

Guided-sampling methods

- Use of metaheuristic algorithms to guide the sampling of candidate structures

- Require a well-defined sampling heuristic and fitness function (i.e. search objective)

Random sampling

� Samples structures randomly or quasi-randomly

� Simple but only sufficient for problems with relatively limited search space

Simulated annealing

� Trades-off search intensity and diversity by imitating the physical annealing process

� Efficient for fitness functions with relatively small number of local optima

Hopping methods

� Transform the fitness function into basins via local structure relaxation

� Useful for high dimensional fitness functions that lend themselves to an efficient local optimization routine

Evolutionary algorithms

� Maintain and evolve a population of structures imitating natural evolution processes

� State-of-the-art for various applications, but may be intractable when stability assessment is computationally expensive

Data-driven methods

- Predict crystal properties/types/structures from existing structural information

- Require considerable amount of data

Empirical rules

� Predict with empirical principles/diagrams obtained via observation and/or simple data mining

� Simple and fast, but with relatively low precision

ML-based structure-function relationships

� Develop inexpensive ML models of structure-function relationships for use in CSP search

� Efficient and accurate when combined with proper structural representation

Metaheuristic-ML hybrid methods

� Accelerate the guided sampling by learning ML models on the fly

� Useful for problems with expensive stability assessment computation

Crystal structure classification

� Classify and select materials macro-structure types directly from data

� Unable to predict non-existing structure types

Generative models

� Learn a representation of structures and directly reconstruct stable candidates

� Require an efficient and invertible structure representation

Mathematical optimization

- Formulates the problem as a mathematical optimization model and solves for its global optima

- Rigorous and flexible, but with relatively higher computational cost

Nonlinear programming

� Models with continuous variables, incorporating nonlinear constraints, when applicable

� Compatible with most algebraic structure-function relationships

Mixed-integer linear programming

� Models problem with a mix of continuous and integer variables (including logical/Boolean variables), but utilizes only linear constraints

� Requires more modeling effort, but shows better numerical tractability than previous method
assembly of secondary building units (AASBU) that trans-

forms the design space from atoms to secondary building

units. This method performs especially well in terms of

reducing the computational cost for CSP of framework

structures.
www.sciencedirect.com 
Geodecker [26�] proposed the minima hopping (MH)

algorithm that introduces a history list that contains all

previously visited minima to avoid exploring the same

regions. While MH has similar characteristics as basin-

hopping, it has a different theoretical basis and is
Current Opinion in Chemical Engineering 2019, 1:100726
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expected to climb out of a local minimum must faster than

the latter. This method has been utilized extensively in

non-periodic systems such as nanoclusters [27–29]. Ams-

ler and Geodecker [30] extended this method to be able

to deal with unit cell-based periodic systems. Later,

researchers further extended MH to handle surfaces

[31], porous structures [32], two-dimensional materials

[33,34], and grain boundaries [35]. We note that, over

time, the cost function in MH has evolved from theoreti-

cal and/or empirical PES to density functional theory

(DFT) calculated PES, following the major trend in

computational chemistry.

A large category of meta-heuristic search frameworks is

that of evolutionary algorithms, with the most popular

variant being genetic algorithms (GA), which are inspired by

biological evolution [36]. Unlike the other aforemen-

tioned algorithms, which consider (and gradually

improve) a single solution at a time, the main character-

istic of GA is that it maintains a collection (a.k.a. popula-
tion) of solutions. To the best of our knowledge, the first

deployment of GA for addressing an inorganic CSP search

problem was proposed by Smith [37]. Bush et al. [38] later

combined GA with a standard local energy minimization

routine. Deaven and Ho [39] described the system with

atomic coordinates and applied advanced mating and

mutation techniques, proving that GA outperforms SA

significantly. Many of the ideas in that paper, such as a

real-space representation of structures, spatial heredity,

and the use of local optimization, profoundly influenced

many evolutionary algorithms developed later. Johnston

[40] has utilized GA extensively to study nanoclusters and

nanoparticles. Woodley et al. [41,42] proposed a multi-

stage GA method and further improved their method by

imposing geometry constraints [43]. More recent studies

have focused on improving, extending, and efficiently

implementing GA algorithms. Lloyd et al. [44] explored

several strategies to improve the efficiency of the GA

algorithm for nanoalloy cluster CSP, such as advanced

initialization, predating, and mutation schemes. Glass

et al. [45] implemented a code called the universal structure
predictor: evolutionary xtallography (USPEX) with

advanced features, such as local optimization, spatial

heredity, lattice mutation, and others. They tested the

USPEX code on numerous systems and observed a high

success rate with some examples discussed in [3�]. Tri-

marchi and Zunger [46] designed an evolutionary algo-

rithm to predict both the lattice geometry and the atomic

configuration of a crystalline material, referred to as the

global space-group optimization (GSGO) problem. They

further extended their algorithm to be able to predict

the stoichiometries at the same time [47]. Froltsov and

Reuter [48] discussed how the size and mutation schemes

in a GA algorithm would affect its robustness concerning

algorithmic parameters in the context of nanocluster CSP.

Woodley and Catlow [49] implemented and compared

the Darwinian and Lamarckian evolving schemes in GA
Current Opinion in Chemical Engineering 2019, 1:100726 
algorithms for CSP. Lonie and Zurek [50] implemented

XTALOPT, another GA algorithm in which they devel-

oped a new periodic displacement operator and used

mixed operators to eliminate duplicate structures and

improve search efficiency.

Particle swarm optimization (PSO) is yet another evolu-

tionary meta-heuristic framework that has been success-

fully utilized in inorganic CSP search problems. First

proposed by Kennedy and Eberhart [51], it was inspired

by patterns of a flying flock of birds. Wang et al. [52��]
implemented such an algorithm for CSP in their crystal
structure analysis by particle swarm optimization
(CALYPSO) code. For this, they designed a unique

scheme to eliminate similar structures as well as imposed

symmetry-breaking constraints to improve the search

efficiency. Readers can find a detailed description in

Wang et al. [53]. Later, Lyakhov et al. [54] reported

new developments of the USPEX as well as developed

a version of PSO algorithm based on their core method-

ologies, showing that that USPEX strongly outperforms

PSO. Meanwhile, Wu et al. [55] have developed a new GA

framework where they combined the classical potentials

with DFT calculations to achieve an efficient GA-based

CSP with DFT accuracy. The research on meta-heuristic

sampling search methods is still highly active, with new

algorithms and applications reported every year.

Data-driven methods
All the previously mentioned guided sampling methods

rely on either less accurate algebraic structure-function

relationships (e.g. empirical equations) or computation-

ally expensive oracles (e.g. DFT calculations). At the

same time, a meta-heuristic search algorithm is highly

dependent on the problem settings (e.g. the definition of

the design space, cost function), making it difficult to

modify and transfer to other problems. Data-driven

methods have been proposed as an alternative approach

for CSP to address these issues. Compared with meta-

heuristic search methods, data-driven methods can learn

the implicit rules and constraints governing stability,

based on a large number of known stable crystal struc-

tures, to accelerate the exploration of the design space

[56].

The practice of data-driven CSP dates back to the use of

empirical rules derived from experimental as well as

theoretical observations. The earliest results include Pau-

ling’s rules for determining the structures of ionic com-

pounds [57,58], which guided some of the earliest

attempts to justify and guide the structure search. Villars

[59–62] built multiple three-dimensional stable phase

diagrams from data analysis to predict lattice geometry

of thousands of binary and ternary compounds. Later,

more elaborate phase diagrams were developed, such as

the Miedema rules for predicting compound forming and
www.sciencedirect.com
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the Pettifor maps for predicting binary, pseudobinary, and

ternary compounds [63,64].

With advances in computational chemistry algorithms

and the ready access to faster computers, the availability

of crystal structures and their calculated properties have

grown exponentially. Large online databases have also

been established to encourage standardization and col-

laboration within the community. Important online data-

bases for inorganic crystals include the International Crys-
tal Structure Database (ICSD) [65], the Materials Project
(MP) [66], the Open Quantum Materials Database (OQMD)

[67], and the Atomic-FLOW for materials discovery (Aflow)

[68]. Schön [69] discussed how those databases could be

employed to assist CSP studies. With such vast quantity

of available data, advanced data science and machine

learning (ML) techniques have found ample potential

for application in inorganic CSP studies.

One crucial aspect of data-driven CSP studies is to learn

appropriate structure-function relationships. Early

attempts have used simple data mining techniques, such

as perceptron [70] and regression [71]. More advanced

ML architectures have since been utilized and resulted in

more accurate structure-function relationships. Special

research interest has been focused on the representation

of crystalline material structures, as it will significantly

affect the speed and accuracy of the machine-learned

model. Behler and Parrinello [72] represented the crystal

systems with all atomic positions and built a neural

network model to learn the DFT potential energy sur-

faces. Meredig et al. [73] developed an ensemble tree-

based formation energy prediction model, which takes

atomic properties of constituent elements as inputs,

reducing the computational cost by six orders of magni-

tude in certain cases. Schütt et al. [74] proposed a new

representation that is suitable for periodic solids based on

partial radial distribution functions. Faber et al. [75]

focused on ML models of formation energies of solids,

investigating the performance of various crystal structure

representations, including Ewald sum matrices and gen-

eralized Coulomb matrices. Isayev et al. [76] proposed

property-labeled materials fragments as representations

of inorganic crystal materials, which requires minimal

structural inputs while preserving a high prediction accu-

racy. Schmidt et al. [77] implemented ridge regression,

random forests, extremely randomized trees, and neural

network models for predicting the stability of perovskites

based solely on properties of constituent elements. They

found that those ML techniques speed up the computa-

tion by at least five-fold without degradation of accuracy.

Xie and Grossman [1] proposed to use the connections

between atoms (i.e. connectivity matrix) of the crystal as

an interpretable universal representation of crystalline

materials in their crystal graph convolutional neural networks
(CGCNN) framework, and they showed promising pre-

dictions for various properties including formation
www.sciencedirect.com 
energies. Zhou et al. [78] developed the Atom2Vec code

that learns properties of atoms as feature vectors for other

ML models. In addition, Chen et al. [79] constructed a

topology-based ML model using a low dimensional repre-

sentation of crystal structures derived from persistent

homology methods.

Generally speaking, ML models perform better when

incorporating structural information. The proper level of

abstraction depends on the materials system as well as the

ML model used in each case (e.g. supervised versus

unsupervised, classification versus regression) and what

type of data (e.g. features, labels) are available. For a more

detailed discussion, we refer the reader to comprehensive

reviews on this topic [80,81]. Today, ML techniques have

been well-accepted and are common practice to acceler-

ate and/or outright replace expensive first-principles cal-

culations, as suggested by Ward and Wolverton [82] and

Schmidt et al. [83]. Following this trend, popular meta-

heuristic search frameworks have also incorporated ML

techniques. Tong et al. [84�] have combined an ML

potential with their CALYPSO code to pre-construct

the ML potential and replace DFT, as well as to train

the ML potential on the fly during the search. Deringer

et al. [85�] have also incorporated ML-based interatomic

potentials in their AIRSS code to reduce the computa-

tional cost. Podryabinkin et al. [86��] proposed to train ML

interatomic potentials with the USPEX evolutionary

algorithm. Jennings et al. [87] developed MLaGA, an

ML-accelerated GA framework for nanoparticle CSP

and reported a 50-fold reduction in computational cost.

It is worth noting that the use of ML-derived structure-

function relationships has the potential to accelerate the

meta-heuristic search significantly. However, given the

combinatorially large design space of inorganic crystals,

the number of structure-function evaluations may still

pose tractability challenges in many cases. Moreover, the

search still suffers from inherent limitations of meta-

heuristics, such as getting stuck at a local minimum.

Ideally, data-driven CSP should locate the optimal struc-

ture(s) directly in the design space given information

about stable crystal structures. This idea roots in the

earliest studies of structure analogy, such as with the

Pettifor maps mentioned earlier, where unknown stable

structures are inferred from known stable ones. Structure

analogy is essentially a classification problem that predicts

the crystal’s macro-structure types given particular con-

ditions (e.g. type of elements and compositions).

Advanced ML techniques have been developed to sys-

tematically tackle such structure analogy type CSP pro-

blems. Curtarolo et al. [71] developed a data mining

workflow for predicting binary alloy structure types using

principal component analysis (PCA) and partial least

squares (PLS). Fischer et al. [88] developed an informat-

ics-based structure suggestion model for predicting

ground state structure types of a large range of
Current Opinion in Chemical Engineering 2019, 1:100726
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intermetallics, which was later extended to ternary oxides

by Hautier et al. [89]. Balachandran et al. [90] utilized

decision tree and support vector machines (SVM) to

classify a multitude of wide band gap AB compounds

as well as RM intermetallics. Pilania et al. [91] built an

SVM based classifier to predict the formability of a given

ABX3 halide composition in the perovskite crystal struc-

ture. Oliynyk et al. [92] applied PLS discriminant analysis

(PLS-DA) and SVM towards the CSP of binary AB

compounds. Oliynyk et al. [93] further developed a

method that utilizes cluster resolution feature selection

(CR-FS) and SVM classification for the CSP of equia-

tomic ternary compositions based only on the identity of

their constituent elements. Yamashita et al. [94] extended

the traditional classification problem by generating the

pool of possible structure types on-the-fly and selecting

the best class with Bayesian optimization (BO) iteratively.

Takahashi and Takahashi [95] used a random forest

classification model to predict the crystal structure of

alloys and oxides. Liang et al. [96��] developed the Crystal
Structure Prediction Network (CRYSPNet), a predictor of

the applicable Bravais lattice, space group, and lattice

parameters of an inorganic material based only on the

latter’s chemical composition.

Although significant progress has been made in using data-

driven methods to classify/select candidate structure types,

it is essentially a simplified version of the original CSP

problem, where the ultimate aim is to obtain the atomic-

level stable structure of crystal materials. To fully realize

such a goal, the ML model should reconstruct the crystal

structure from the representation of the material. Recently,

generative ML architectures have attracted research inter-

est and been utilized as a novel approach for CSP. Genera-

tive models (GMs) for CSP are unsupervised ML models

that learn a low dimensional representation from a high

dimensional structural design space and generate new

structures using knowledge embedded in the latent space.

The key to successful CSP with GMs relies on an efficient

and invertible representation of the crystal design space,

preferably with a one-to-one mapping between the repre-

sentation and the structure design space. Nouira et al. [97�]
first applied a generative adversarial network (GAN) archi-

tecture for CSP and developed the CrystalGAN code, which

generates ternary stable crystallographic structures from

observed binary structures. Noh et al. [98�] proposed a

variational autoencoder (VAE) based crystal structure gen-

erator with 3D image-based invertible input representa-

tion. Hoffman et al. [99] developed a general-purpose VAE

model based on a 3D atomic density representation. Kim

et al. [100] builta GAN for CSPthat utilizes a representation

consisting of unit cell parameters and fractional atomic

coordinates. Evidently, GMs have found broad application

in organic CSP [101]. In fact, GMs can achieve more than

CSP as they could be applied towards the general inverse

design of materials by adding a target function as a condition
[102,103].
Current Opinion in Chemical Engineering 2019, 1:100726 
Mathematical optimization
The search for the most stable crystal structure in inor-

ganic CSP studies is a global optimization problem with a

vast search space. As illustrated in the previous sections,

meta-heuristic search algorithms and data-driven meth-

ods have been efficient approaches for tackling certain

CSP instances. However, outside the field of CSP, a

widely accepted paradigm for solving global optimization

problems is mathematical optimization (MO), which has

not yet been widely applied in this context. An MO

model expresses the optimization problem via an objec-

tive and a set of constraints, and solves this model with

well-established algorithms (e.g. combinatorial and/or

spatial branch-and-bound) that can return mathematically

proven global optimal solutions. The unique advantage of

MO solvers that distinguishes them from meta-heuristic

search methods and data-driven methods is that it is

possible to obtain information about the quality of the

solution; that is, a certificate of whether the solution is

globally optimal, or else how far it is estimated to be from

a possible global optimum (a.k.a. the optimality gap),
which can vary significantly depending on the specific

problem.

The earliest attempt to apply formal MO tools to inor-

ganic CSP problems is the nanocluster study by Maranas

and Floudas [104]. In this work, the authors first trans-

formed the non-convex potential energy function to the

difference between two convex functions via standard

model transformation techniques often applied in the

MO field. Then they formulated the search for the

minimum of the potential energy surface as an optimi-

zation problem for which they then developed a decom-

position type algorithm to find the globally optimal solu-

tion. Although this algorithm could elegantly find the

global optimal solution, it was only efficient for very small

problems (i.e. particle size less than 24). The computa-

tional cost of MO methods is generally higher than meta-

heuristic methods and data-driven methods, which is one

of the main reasons why MO has not been widely applied

in inorganic CSP search problems to-date. In contrast, due

to the generally smaller design space of certain organic

materials, there has been a lot more MO studies in the

field of organic CSP [105–111,112�]. We note that MO

methods have also been extensively used in computer-

aided molecule/solvent design problems (see, e.g.

[113��,114,115�]). Another major obstacle to applying

MO to the inorganic CSP problem is that MO generally

uses predefined algebraic form objectives and constraints,

which are not naturally compatible with first-principle

calculations or machined-learned models.

Despite the limitations stated above, we believe that MO

can be a viable alternative approach for inorganic CSP

search problems with potential unique advantages. From

a practical point of view, the computational cost of MO

methods is constantly decreasing with many major recent
www.sciencedirect.com
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advancements of optimization algorithms. Furthermore,

we can incorporate non-algebraic structure-function rela-

tionships, such as ab initio calculations and machine-

learned models, into an MO framework through surrogate

modeling techniques. We can also apply specialized

modeling tricks (e.g. indicator constraints) to encode

non-algebraic structure-function information (e.g. scenar-

ios, conformations, active sites). As previously stated, the

unique advantage of MO is the ability to determine the

solution’s optimality. Notably, since MO carries out a

systematic search over the entire design space, it has a

high potential to result in non-intuitive designs and

expose previously undiscovered trends. Furthermore,

MO is a relatively flexible paradigm that readily allows

for modifications to the objective and/or constraints con-

sidered in the model, enabling us to go beyond the core

CSP problem (i.e. stability) and explore the design space

in various ways.

In recent years, we have developed a crystal materials

design paradigm that is based on mixed-integer linear

programming (MILP), a popular subclass of MO. We

simplify the design space of a crystal material into a set

of discrete locations that can be occupied by building

blocks (e.g. atoms, secondary building units, mole-

cules). In a nutshell, we start with a canvas of possible

locations that may be occupied by a building block, and

introduce binary decision variables to encode the design

choice of whether or not to place a building block of a

certain type in each location. With this definition, a

crystal materials design essentially has a one-to-one

mapping to a set of binary decision variables. We can

then formulate a structure-function relationship that

links material properties and decision variables within

an MILP model that can be solved with powerful

existing numerical methods. We have applied this

design paradigm to a variety of material systems and

applications. Hanselman and Gounaris [116��] first

introduced the paradigm and demonstrated its applica-

tion in designing two-dimensional periodic catalytic

surface patterns using a coordination number based

structure-function relationship. This work was later

extended into a multi-objective optimization frame-

work to explicitly account for the stability of the cata-

lytic surfaces [117]. In addition, a conformation-based

model was used as the basis for a perovskite design

framework, in which first principle calculations were

incorporated via advanced regression techniques [118

,119�]. Finally, Isenberg et al. [120] applied an MILP-

based paradigm to non-periodic nanocluster systems

and showed how to design highly cohesive monometal-

lic nanoclusters. Yin et al. [121] further extended the

methodologies to bimetallic nanoclusters, demonstrat-

ing also how MILP could be combined with meta-

heuristic search algorithms. The concepts and method-

ologies associated with the MO paradigm can also be

applied on one-dimensional material systems. We shall
www.sciencedirect.com 
illustrate this in the below case study, where we will

apply this paradigm in the context of a nanowires CSP

problem.

Case study: Semiconductor nanowires CSP

Semiconductor nanowires (NWs) exhibit unique physical

properties due to their nanoscale sizes and reduced

dimensionality. They are predicted to play a key role

as fundamental building blocks in next-generation opti-

cal, electronic and catalytic devices and systems. Crystal

structures are crucial in semiconductor NW research as

they affect the quantum and electronic properties of the

NWs. Interestingly, NWs can form different crystal struc-

tures from their bulk counterparts and exhibit phase

changes across orientations and sizes. In our case study,

we will illustrate how mathematical optimization could

handle the semiconductor NWs CSP problem. To for-

mulate a CSP optimization model, one needs to define a

proper optimization objective as a stability indicator.

Following the literature in this field, we choose the

per-atom cohesive energy (Ecoh) as the design objective

for our optimization model. The cohesive energy is

defined as the average energy difference between infi-

nitely separated neutral metal atoms and the crystalline

nanostructures formed by those atoms [122]. It measures

the strength of interatomic bonding between atoms, and

is thus often used to indicate the stability of nanomater-

ials. In the following, we will introduce the structure-

function relationship we used for determining the cohe-

sive energy of any given NW structure. Subsequently, we

will illustrate how to formulate a mathematical optimi-

zation model that accounts for this structure-function

relationship. Finally, we will briefly discuss our compu-

tational experiments and results.

Structure-function relationship. The first step of apply-

ing MO to materials design problems is to identify the

structure-function relationship, that is, a relationship

between a nanostructure and its functionality, for which

in this case study we will consider Ecoh to be the func-

tionality of interest. In particular, we will approximate

Ecoh with the sum of pairwise potential energies, averaged

by the number of atoms in the system, as illustrated in

Equation 1, where N refers to the number of atoms and B
is the complete set of bonds. We will adopt the Khor-Das

Sarma (KDS) empirical potential energy [123], which is a

function of the interatomic distance rij between two

atoms i and j. We highlight that the KDS potential

function has been applied to various elemental and com-

pound semiconductor systems and showed good agree-

ment with experimental/ab initio calculation results (see,

e.g. [124–127]). In Equation 2, A, B, a, b, g, u, and l are all

empirical parameters that depend on the semiconductor

type. The symbol r i;min denotes the distance between

atom i and its nearest neighbor, while Zi is the effective

coordination number of atom i. This structure-function

relationship applies not only to elemental NWs, but also
Current Opinion in Chemical Engineering 2019, 1:100726
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to compound NWs when considering perfect lattice

geometries, where each lattice point is associated with

a fixed type of atom:

Ecoh ¼ 1

N

X
ði�jÞ2B

Eij
coh ð1Þ

Eij
coh ¼ Ae�bðrij�ri;minÞg Be�lrij

Za
i

� e�urij

� �
ð2Þ

As mentioned previously, we will define our design space

as a set of discrete locations for building blocks, which are

simply atoms in this case study. Under this assumption,

any distance r ij would attain a value from a discrete set of

values associated with the lattice type of choice. The

possible values of r ij will be dependent on which layer n
of atom’s i neighbors does atom j belong to. Given this,

the value of ri;min will be a fixed parameter that depends

on the lattice constant. Thus, the structure-relationship

can be discretized and reformulated into a summation of

individual atom contributions as:

Ecoh ¼ 1

N

X
n

X
i

f ni ðCNn
i Þ ð3Þ

f ni ðCNn
i Þ ¼ pnðCNn

i Þ1�a � qnCNn
i ð4Þ

pn ¼ ABeða�1Þbðrn�rminÞg�lrn ð5Þ

qn ¼ Ae�bðrn�rminÞg�urn ð6Þ

where CNn
i is the coordination number of atom i at the nth

layer of neighbors, while pn and qn are suitably congre-

gated parameters. This simplified structure-function rela-

tionship can then serve as the objective of an optimization

model.

Mathematical modeling. Let our NW design canvas be I,
consisting of a set of discrete locations from a perfect

lattice without defects. For each location i 2 I, we denote

with Nn
i � I all locations that are nth layer neighbors of i,

taking into account the applicable periodicities, as dic-

tated by the lattice type. The set of all neighboring layers

considered is denoted as L. We then introduce binary

decision variables yi to indicate the occupancy of an atom

(of the corresponding elemental type) at each location

i. Specifically, yi ¼ 1 encodes the existence of an atom at

canvas location i, while yi ¼ 0 means that location i does
Current Opinion in Chemical Engineering 2019, 1:100726 
not contain an atom. Thus, a set of decision variables yi
represents a unique NW design within the specified

canvas. Additionally, we define integer variables cnni to

represent the coordination number of i at n-th layer

neighbors. Finally, auxiliary continuous variables vni are

utilized for encoding atom at location i’s contribution to

the overall cohesion. The search for the most stable NW

design can now be equivalently viewed as the identifica-

tion of a set of decision variable values that are optimal

with respect to the objective and that satisfy a number of

constraints, as presented in the below optimization

model:

max
yi ;cn

n
i
;vn

i

1

N

X
n2L

X
i2I

vni ð7Þ

s:t:
X
i2I

yi ¼ N 8 i 2 I ð8Þ

yi ) fcnni ¼
X
j2Nn

i

yjg 8 i 2 I 8 n 2 L ð9Þ

yi ) fcnni � CNn
ming 8 i 2 I 8 n 2 L ð10Þ

:yi ) fcnni � 0g 8 i 2 I 8 n 2 L ð11Þ

vni ¼ f ni ðcnni Þ 8i 2 I 8 n 2 L ð12Þ

yi 2 f0; 1g 8 i 2 I ð13Þ

cnni 2 f1; 2; 3; . . . ; CNn
maxg 8 i 2 I 8 n 2 L ð14Þ

0 � vni � Vn
max 8 i 2 I 8 n 2 L ð15Þ

Equation 7 is the objective function, which implements

the cohesive energy function from Equation 3. Here,

values of f ni ðCNn
i Þ are encoded by auxiliary variables

vni . Equation 8 defines the number of atoms to be occu-

pied in each periodic repetition of the canvas as being N ,

which is an integer parameter input to this model. Equa-

tions 9–11 define auxiliary variables cnni to represent the

number of layer-n neighbors of each location i. Note that

this variable shall attain the value of zero whenever there

is no atom occupying location i, while when i is occupied,
www.sciencedirect.com



Search methods for inorganic CSP Yin and Gounaris 9

2 https://idaes-pse.readthedocs.io/en/stable/user_guide/

modeling_extensions/matopt/index.html.
3 https://idaes-pse.readthedocs.io/en/stable/getting_started/index.

html.
4 https://idaes.github.io/examples-pse/latest/Examples/MatOpt/

index.html.
it will be required to be at least greater than some pre-

defined number, CNn
min, to avoid extremely low coordi-

nated atoms. Equation 12 define auxiliary variables vni to
be equal to f ni ðCNn

i Þ, where the latter is taken as in

Equation 4. Finally, Equations 13–15 declare the domains

of all variables, with CNn
max and Vn

max being the upper

bounds of variables cnni and vni , respectively.

The above optimization model belongs to a class of

optimization problems called mixed-integer nonlinear

program (MINLP) and can be readily solved with

state-of-the-art global optimization solvers. Since

the only nonlinear components in this optimization is

the function f ni ðcnni Þ, which depends on a discrete

integer variable cnni , we could further simplify this

model by replacing Equation 12 using standard

piecewise linear (PWL) reformulations that result in

mixed-integer linear constraints. Importantly, the new

PWL-reformulated optimization will be a mixed-integer

linear program (MILP) that is typically more tractable, as

it is amenable to be solved with well-established com-

mercial codes (e.g. CPLEX [128]). Note that, due to the

discrete nature of cnni , the PWL formulation will be able to

precisely represent f ni ðcnni Þ values at those integer points.

For details on PWL reformulations, readers are referred to

our previous work on designing bimetallic nanoclusters

[121].

We note that the curvature of the function f ni ðcnni Þ
depends on the values of parameters of a and pn. In cases

when f ni ðcnni Þ is a concave function, we could capitalize on

additional model simplifications via direct linearization

without the need for PWL reformulations. This is accom-

plished by modeling f ni ðcnni Þ as a set of secant lines passing

through points corresponding to integer values of

cnni . Specifically, Equation 12 can be replaced with

vni � snpcn
n
i þ tnp, for all i 2 I, n 2 L, and p 2 f1; 2; 3; . . . ;

CNmaxg, where p are the indices of secant lines, while snp
and tnp are respectively the slopes and intercepts of those

lines. As we are maximizing the cohesive energy, the

optimizer will choose the exact value on its corresponding

secant line, as it is the maximally attainable value per-

mitted by the inequality. For details on how to treat a

concave function under a maximization setting, readers

are referred to our previous work on designing monome-

tallic nanoclusters [120].

The above mentioned modeling and reformulation

procedures are popular techniques practiced in the

process system engineering community in contexts of

process design. However, we recognize that familiarity

with such techniques might not be as prevalent in the

broader CSP research community, which represents a

significant barrier to adopting an MO paradigm for CSP.

To bridge the knowledge gap and simplify the MO

modeling and implementation process, we have devel-

oped a Python toolkit called MatOpt to automate many
www.sciencedirect.com 
aspects of this process. The MatOpt toolkit2 uses mate-

rials research-inspired syntax and hides the mathemati-

cal modeling and numerical optimization details from

its users. It is distributed as part of the IDAES-PSE

[129] package3 and is freely available. Along with the

software distribution, we have provided several Jupyter

notebook examples4 to demonstrate various use

cases for this toolkit. In this case study, we will

use MatOpt to instantiate and solve NW design opti-

mization problems in accordance to the models

described above.

Computational study: setup. For our computational

study, we shall focus on III-V compound semiconductor

NWs, which constitute an important class of NW systems.

They show unique properties, including controllable

bandgap, high carrier mobility, great mechanical flexibil-

ity, and large surface-to-volume ratio, making them good

candidates for next-generation electronics, photonics, and

sensors. Contrary to the fact that bulk III-V systems

usually adopt the cubic zinc blende lattice geometry,

III-V NWs have been found to also exhibit a hexagonal

wurtzite (WZ) geometry, depending on their size, orien-

tation, and synthesis conditions. Research efforts have

been devoted to controllable synthesis and tailoring of

pure phase III-V NWs as well as advanced device/system

design based on heterostructures of mixed III–V NW

phases [130,131]. To that end, the ability to predict the

stable crystal structures of III–V NWs would benefit both

experimental synthesis and computational design studies

in this field.

More specifically, we choose to illustrate our

methodology with InAs NWs, a representative III–V

system. The main characteristic of a NW’s structure is

its large length-to-width ratio, which we achieve by

defining a canvas along a predefined direction. In par-

ticular, the subsets with neighboring locations are

defined taking into account that the canvas repeats

periodically along the growth orientation. Given the

WZ lattice geometry, we consider three common orien-

tations, namely 0001, 1100 and 1120 in hexagonal

Bravais-Miller indices.

For the periodic length of the canvas along the growth

orientation, we have chosen a multiple of the smallest

periodic unit length for each orientation. For example,

the smallest periodic unit length for the 0001 orientation

of a WZ lattice is 3:771 � IAD, where IAD is the crystal’s

interatomic distance, and we specifically use four times

this value as the periodic length of our NW, that is,
Current Opinion in Chemical Engineering 2019, 1:100726
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Figure 1

linear constraints
MILP feasible region
possible optimal points
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Modeling the structure-function relationship with a set of linear

constraints (secant lines).

5 https://github.com/IDAES/examples-pse/blob/main/src/Examples/

MatOpt/nanowire_design.ipynb.
13:353 � IAD. Furthermore, the canvas should extend

radially outwards from the growth orientation axis of the

NW. We do so by layering atomic locations, following the

applicable lattice geometry. A question arises as to how

many layers of atom locations should be specified. As

demonstrated in our previous works, we need to carefully

decide the size of the canvas for an optimal trade-off

between model tractability and solution optimality. Too

small a canvas may lead to a suboptimal design limited by

the canvas boundary. At the same time, too large a canvas

will cause numerical tractability issues and we might not

be able to get the optimal solution within the time limit.

In this study, for each given size N , we will iteratively

increase the canvas size (i.e. increase layers of locations

around the axis) and solve the optimization problem until

no atoms in the resulting design are on the outermost

layer of atom locations (i.e. the canvas boundary). To

eliminate the translational symmetries (that are perpen-

dicular to the axis), as well as to encourage a solution that

distributes along the axis, we fix the occupancy of the

‘core’ of the NW (i.e. atom locations on or near the axis) as

well as we enforce a radial growth of atoms using con-

straints similar to those described in [116��].

The parameters of the KDS potential function are taken

as A ¼ �709:003 eV, B ¼ 1:978, a ¼ �0:368, b ¼ 12:028,
g ¼ 3:202, u ¼ 1:794 Å�1, l ¼ 2:355 Å�1, as suggested in

the literature for InAs NWs [132]. The lattice constants of

the ideal WZ geometry are calculated from the cubic bulk

lattice constant, acubic ¼ 6:058 Å, via simple geometric

conversion; that is, a ¼
ffiffi
2

p
2
acubic ¼ 4:284 Å and

c ¼ 2
ffiffi
3

p
3
acubic ¼ 6:996 Å. The InAs NW’s IAD associated

with the calculated lattice constants is IAD ¼ 2:624 Å.

Using the above information, we then calculate the

discrete distances rn and rmin, as well as the intermediate

model parameters pn and qn according to Equations 5 and

6, respectively. An important parameter to determine is

the range of n, which indexes over the neighboring layers

considered in the model (set L). For this, we calculated

and compared the value range of the function f ni ðcnni Þ for

different n and found that, in the InAs NW system of

interest, the first layer contribution dominates the overall

value. For example, when comparing the first layer and

the second layer, we found that
f 1i ðcn1i Þ
f 2i ðcn2i Þ

> 1012. Thus, we

can simplify the optimization model further by consider-

ing only the first layer of neighbors around each location

in our canvas. In regards to parameters of the function

f 1i ðcn1i Þ, we used the values p1 ¼ �2:906, q1 ¼ �6:393,
CN 1

max ¼ 4, CN 1
min ¼ 2, V1

max ¼ 6:212, and

a ¼ �0:368. With this set of parameters, the function

is concave and, as mentioned previously, it can be

expressed without loss of accuracy using several linear

constraints (see Figure 1), reducing our optimization

model to an MILP model.

Computational study: Implementation and results. We

utilized the MatOpt toolkit [133] to facilitate the
Current Opinion in Chemical Engineering 2019, 1:100726 
implementation of our NW design model. The pertinent

code can be found online in the form of a Jupyter

notebook.5 For detailed descriptions of MatOpt concepts

and functionalities, we refer the users to the online

documentation. It suffices to say that the toolkit shall

generate appropriate Pyomo model objects that are read-

ily solvable by any MILP solver accessible via the Pyomo

modeling library [134,135]. In our case, we instruct

MatOpt to invoke the well-established commercial solver

CPLEX [128].

For each selected orientation, we run the optimization

model for various settings of N and obtain optimal (i.e.

relative optimality gap less than 0.5%) solutions in each

case. The optimal objective values are presented in

Figure 2, noting that in order to facilitate a fair comparison

across all orientations, the results are displayed as a

function of the number of atoms per NW length equal

to the lattice’s IAD. In all cases, we observe that the per-

atom cohesive energy exhibits an increasing trend,

asymptotically approaching the bulk value as the NW

becomes wider. This suggests that InAs NWs are less

stable than their bulk counterparts, which agrees with the

literature. Furthermore, for a given NW size, the 0001 ori-

entation is more advantageous in terms of cohesive
www.sciencedirect.com
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Figure 2

number of atoms per IAD length
Current Opinion in Chemical Engineering

Optimal cohesive energy values at different NW sizes, along with

example optimal structures, for three different orientations of WZ

lattice geometry. To aid in the visual illustration of the example

structures, a cross-sectional view as well as a side view are provided.

The purple color represents In atoms, while the yellow color

represents the As atoms. Every other periodic repetition of the canvas

is gray-scaled so as to better convey the overall NW shape.
energy than the other two studied orientations, which

agrees with both computational and experimental results

in the literature [136,137]. Aside from such general trends

that can be inferred from our computational results, the

obtained solutions are useful inasmuch as they can serve

as model NW structures to guide further research effort.

In this way, the MO-based NW design optimization

model has the potential to be a simple and efficient tool

in assisting semiconductor NW CSP research, comple-

menting the other approaches. On that note, Figure 2 also

illustrates some example solutions that can be obtained

via the approach used in our study.

Conclusions
Owing to the inherent combinatorial complexity of an

inorganic material’s design space, an efficient search

algorithm is the key to a successful CSP methodology.

This paper reviewed past studies as well as recent prog-

ress on this topic. Guided-sampling methods and data-

driven methods constitute the majority of the methodol-

ogies developed to date. The main difference between

the two approaches is that guided-sampling methods

make self-improving predictions iteratively based on an

explicit structure-function relationship, while data-driven
www.sciencedirect.com 
methods learn the optimal result from data directly. In

addition, we reviewed a mathematical optimization-

based materials design framework, which can serve as

an alternative approach for CSP. We then presented an

example application of this framework to design highly

cohesive semiconductor nanowires, demonstrating the

concepts and procedures of the approach as well as the

toolkit we have developed to accelerate and automate this

process. We opine that there is currently no dominant

search method for inorganic materials CSP and that, given

today’s explosion of new materials discovery, the many

diverse search paradigms currently in existence position

the field well for a bright future.
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Férey G: De novo prediction of inorganic structures developed
through automated assembly of secondary building units
(aasbu method). Angew Chem 2000, 39:2270-2275.

23. Mellot-Draznieks C, Girard S, Férey G, Christian Schön J,
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