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A B S T R A C T

Metal–Organic Frameworks (MOFs) are promising functional microporous materials for a variety of next-
generation sustainable energy systems. Their large design space makes it impossible to synthesize, test, and
screen them all to identify best candidates. The computational discovery of MOFs has thus become a popular
research topic, with methodological advances in computational chemistry and data science heavily contributing
to this. Structure databases, materials representation, property evaluation methodologies, performance metrics,
and search algorithms all pose open challenges for the community to solve. These challenges are summarized
and briefly discussed in this study, with a focus on the engineering aspects required for computational MOF
discovery to become a reliable tool for industry. As computational discovery workflows are complicated and
necessitate skills from a variety of disciplines, bridging the knowledge gap and enhancing collaboration are
critical. Despite the challenges, we remain optimistic about the great potential of computational MOF discovery
technology.
1. Introduction

The increasing fossil-fuel based energy consumption is causing en-
ergy crises, global warming, climate change, and other severe issues.
The necessity to move to sustainable energy has become widely rec-
ognized, as reflected in international agreements (Kyoto, Paris, etc.).
However, in order to achieve the aspired global energy transition, it
is critical to develop new sustainable energy technologies and systems.
Transitioning present energy systems and discovering new sustainable
energy sources have sparked a lot of research. For traditional energy
systems such as power plants, refineries, and transportation vehicles,
advances have been made in carbon capture and conversion (Bui
et al., 2018), hydrogen production and utilization (Ishaq et al., 2021),
and methane reduction and storage (Collins et al., 2018; He et al.,
2018a), to name but a few major areas. Meanwhile, research into
the harvesting, conversion, storage, and utilization of novel energy
sources such as wind, hydro, photovoltaic energy, solar energy, and
biomass energy is rising (Chu and Majumdar, 2012; Qazi et al., 2019).
Those revolutionary technologies and advanced applications rely on
the development of novel high-performing materials. Metal–organic
frameworks (MOFs) have lately emerged as one of the most active
research topics in the field of sustainable energy materials.

MOFs have been used in a variety of sustainable energy applications
with great success. For example, MOFs have been intensively inves-
tigated for adsorption-based applications due to their intrinsic high
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porosity, leading to outstanding gas storage and separation capabili-
ties (Li et al., 2018, 2019). MOFs with photo- and electro-active ligands,
as well as metal ions, can be employed as energy acceptors or catalytic
sites in alternative energy systems (Reddy et al., 2020; Liao et al., 2018;
Bavykina et al., 2020). Supercapacitors can be made from MOFs with
electrical conductivity (Zhang et al., 2019a). Furthermore, because of
the synergistic effects among the functional units, a careful combination
of MOFs with other functional materials (semiconductors, graphene,
etc.) can result in advanced composites with superior performance than
their individual components (Stock and Biswas, 2012). These MOF
composites serve as novel platforms for investigating sustainable energy
applications.

MOFs are customizable because of their simple coordination chem-
istry, which allows for rational design. MOFs are often synthesized
modularly by connecting organic molecules to metal ions, clusters,
or chains, to build pre-determined extended-network architectures.
Researchers can modify the properties of these materials with great
control, and can develop materials for specific applications thanks
to the modular synthesis approach. It is also feasible to control the
properties of these materials further by carrying out linker function-
alization (Henke et al., 2013; Lyu et al., 2019), metal/linker ex-
change (Lalonde et al., 2013; Karagiaridi et al., 2014), guest instal-
lation (Suh et al., 2019; Talin et al., 2014), defect engineering (Fang
et al., 2015; Chong et al., 2017), among other techniques.
vailable online 14 October 2022
098-1354/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.compchemeng.2022.108022
Received 24 April 2022; Received in revised form 25 September 2022; Accepted 29
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

September 2022

http://www.elsevier.com/locate/cace
http://www.elsevier.com/locate/cace
mailto:gounaris@cmu.edu
https://doi.org/10.1016/j.compchemeng.2022.108022
https://doi.org/10.1016/j.compchemeng.2022.108022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.108022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Chemical Engineering 167 (2022) 108022X. Yin and C.E. Gounaris
Fig. 1. Schematic representation of MOF computational discovery stages and how they may relate to experimental discovery and physics understanding.
The number of synthesized MOFs has seen an exponential increase,
with the number of possible MOF structures being essentially infinite,
given the enormous set of possible linkers and metal nodes as well
as the different ways to combine them. The presence of a significant
number of MOFs is both a challenge and an opportunity. Because the
experimental synthesis, characterization, and testing of a novel material
typically takes significant amount of time and resources, it is impossible
to synthesize and test millions of MOFs for each application of interest.
With the rapid development in improved computational chemistry
techniques and access to lots of computational power, recent studies
have focused on computational discovery of MOFs, where the vast
materials design space is explored to identify promising candidates in
a time-effective manner. The computational discovery of MOFs begins
with a database of candidates. The materials design space is then
described using a materials representation scheme. The candidates’
functionalities are then computationally assessed using empirical corre-
lations, machine-learned models, or molecular simulations. The search
objective/performance metrics are then determined. Finally, a search
(e.g., screening, heuristic, or optimization) is conducted to explore
the design space. Following the identification of the best candidates,
experimental efforts can be focused on these materials and physical
insights could be inferred. To aid readers in understanding the big
picture of MOF computational discovery, we provide Fig. 1, where
we schematically represent the development stages and also coarsely
illustrate how computational discovery interacts with experimental dis-
covery and physical understanding. We further refer readers to recent
reviews (Ludwig, 2019; Lyu et al., 2020; Montoya et al., 2022) for
details on how computational, experimental and/or physical discovery
can synergize towards accelerating materials discovery.

In the remainder of this paper, we will highlight some of the current
open challenges in terms of each of the above-mentioned stages in the
computational discovery process for MOFs, focusing on the engineering
aspects. In Section 2, we discuss challenges in experimentally generated
and hypothetical MOF databases, limitations of current materials rep-
resentation techniques, and engineering challenges. Then, in Section 3,
we summarize open challenges in properties evaluation methods, in-
cluding molecular simulation and machine learning methods, as well
as present common engineering concerns. Finally, in Section 4, we
discuss open challenges related to both search objectives/performance
metrics and search algorithms. We conclude with some final remarks in
Section 5. Targeting for a short review paper, we keep our exposition of
ideas at a high level, providing references to detailed studies for readers
to further review.
2

2. Databases and representation

Computational MOF discovery starts from structures of candidates.
A crystallographic information file (CIF) is a typical digital representation
of a MOF structure that contains information about atomic positions,
bonds, symmetry groups, and lattice factors. The Cambridge Structural
Database (CSD) (Groom and Allen, 2014) and the Computation-Ready,
Experimental (CoRE) MOFs database (Chung et al., 2014, 2019) are
two popular databases of MOF structures sourced from experiments.
Whereas the entries in the CoRE database are pre-curated so they can
be readily used in computational workflows, we highlight that many
experimentally obtained structures need to first be curated (e.g., by
fixing missing atoms and incorrect bonds) before becoming input. In
recent years, approaches that in silico generate hypothetical crystal
structure databases (e.g., hMOF Wilmer et al., 2012; Bobbitt et al.,
2016) have been developed, taking advantage of the modular nature
of MOF structures and constructing structures from building blocks.
We refer the readers to recent publications (Daglar and Keskin, 2020;
Ongari et al., 2020) for overviews of MOF database development.

CIF files are not directly used in computational workflows, however,
despite the fact that they represent complete MOF structures. To build
a more comprehensive description of a material, scientists normally
need to condense the information in a CIF and also dig up additional
hidden information about geometries, topologies, chemistries, and en-
ergy. There is no one-size-fits-all formalism, and there are numerous
representations in the literature. Common descriptors for representing
a MOF include geometrical descriptors that describe the pore environ-
ment, chemical descriptors that effectively account for differences in
the chemical environments, topological descriptors that capture details
of the pore structures, and energy-based descriptors that consider the
electronic structure and energy surfaces. In the literature, there are
several ways to categorize all descriptors. We refer the readers to a re-
cent review of MOF representation and selection (Mukherjee and Colón,
2021). Normally, when researchers need a representation of MOFs, they
need to gather descriptor information from a variety of sources and
choose amongst them using experiments or chemical intuition. Recent
research has focused on automated generation of a comprehensive
representation of MOFs (i.e., learn latent space with machine-learned
models), paving the path for CIF files to be directly incorporated into
computational discovery workflows. Here, we summarize several open
challenges related to MOF databases and representations:

2.1. Hypothetical databases

Diversity One issue with current hypothetical MOF databases is that
they lack the chemical and structural diversity of experimentally syn-
thesized MOF collections. Furthermore, different hypothetical MOF
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databases can cover different regions of the MOF design space (Moosavi
et al., 2020). Most hypothetical MOF databases usually only consider a
limited number of building blocks and coordinating topologies. Such an
approach overlooks the huge design space potentially accessible when
other metals, inorganic linkers and topologies are considered, which
will make the computational discovery incomplete and inefficient. To
address the issues related to database diversity, a diverse selection of
building blocks must be used when constructing those databases. Re-
cently, more studies have discussed the diversity issue of hypothetical
MOF databases while newer and more diverse MOF databases have
been reported (Gómez-Gualdrón et al., 2016; Nicholas et al., 2021;
Majumdar et al., 2021). However, current studies focus mainly on a
few aspects of diversity (e.g., chemical species, building blocks, typolo-
gies, distance on a certain projected latent space) without generally
validating those diversity metrics. In our opinion, open challenges
that the community still has to address include how to: (1) properly
define (and, preferably, quantify) the diversity of MOF databases; (2)
evaluate the diversity metrics of current MOF databases; (3) create
diverse databases of building blocks for the on-demand construction of
hypothetical MOFs; and (4) develop methodologies to diversify given
structure databases (e.g., filter down to a diverse subset of structures
or generate a superset using artificial structure components).

Synthesizability Another significant issue associated with hypo-
hetical MOF databases is the synthesizability of such structures. When
he MOFs considered in a discovery workflow to identify a promising
andidate are sourced from experiments, we could potentially refer to
he available experimental protocols to synthesize the material, but
ith hypothetical MOFs that are generated in silico, we have little

or no knowledge of whether they are practically synthesizable, let
alone how to do this. Some recent studies (Witman et al., 2016; Polat
et al., 2020) have integrated computational screening with experi-
mental synthesis, which is the ideal research paradigm to address
this issue when resources are plentiful. It could be more practical if
we had the ability to predict whether or not a hypothetical MOF is
synthesizable, and even recommend a synthesis route. In fact, since
synthesizability arises from a combination of factors and can be dif-
ficult to define, it may be better to use multiple layers of criteria
(e.g., thermodynamic, mechanical stability), as inspired from directed
evolution (Wang et al., 2021). Understanding, quantifying, and predict-
ing the synthesizability of MOFs is currently a research hotspot (Ding
et al., 2019; Anderson and Gómez-Gualdrón, 2020; Park et al., 2021;
Nandy et al., 2021a,b) and various challenges exist throughout the pro-
cess, including obtaining experimental metadata, improving molecular
simulation methods, defining synthesizability metrics, and developing
synthesizability prediction methods.

2.2. Experimental databases

From Experiments to Database MOF structures derived experimen-
tally are still a safe and reliable choice for many computational studies.
However, there are numerous challenges to overcome between syn-
thesizing a MOF structure and the latter becoming an entry in a
database. Accelerating experimental synthesis is one of the first that
come to mind, and to that end, we note that studies towards au-
tomated high-throughput synthesis, characterization, and testing are
recently on the rise (Clayson et al., 2020). Another challenge is to
produce computable CIF files from characterizing experimental re-
sults. In some circumstances, current characterization analyses can
be ineffective or inaccurate. This may result in CIFs not accurately
reflecting the experimentally synthesized MOF structure. Furthermore,
because experimental setups vary, structures generated from several
sources may not be consistent. It has been reported that there are
52 different experimentally observed lattice parameters for the same
HKUST-1 structure (Nazarian et al., 2017). Finally, experimental meta-
data (particularly ‘‘failed’’ trials, which are critical for understanding
3

synthesizability) are rarely made publicly available. Challenges remain
in establishing standardized experimental protocols and also recording
experimental metadata (including failed ones) in machine-readable
formats along with the structure files.

From Database to Computational Workflow From entries in
structure databases to actual inputs of computational workflows, chal-
lenges still exist. To begin with, not all structures in experimental
structure databases are labeled as MOFs accurately. Furthermore, those
unprocessed MOF structure files may contain undesirable characteris-
tics, such as solvent molecules, missing hydrogen atoms, and overlap-
ping/disordered atoms, which can cause properties evaluation methods
such as molecular simulation to be erroneous. With such a vast number
of MOF structures determined, manually resolving these issues becomes
impossible. To produce computation-ready structure databases, auto-
mated approaches have been developed to sift through experimental
databases to detect MOF structures, remove solvent molecules, address
disorder, and so on Chung et al. (2014, 2019). Because automated
methods are not perfect and different methods are used in different
databases, some structures in those automatically-curated databases
are inaccurate, and same MOFs in two databases can have different
structures (Altintas et al., 2019). Challenges remain in further improv-
ing such automatic pre-processing methods and standardizing a set of
methodologies for the community.

2.3. MOFs representation

Selection Selecting a MOF representation can be fairly difficult due
to the enormous number and diversity of possible methods. The best
representation will be determined by a number of factors, including the
dataset used, the computational model built, the information retrieved,
and the problem under investigation. There is currently no universal
representation of MOFs. In fact, depending on the problem settings,
practically every MOFs computational discovery study in the literature
has a different representation. Traditionally, scientists with specific
domain knowledge determine what should be included in a MOF
representation. This approach usually requires a significant amount
of manual operations which reduces reproducibility. Furthermore, the
performance of these representations does not always translate across
workflows. In order to compose a representation from all possible
descriptors, feature selection and feature extraction approaches have
recently been applied (Altintas et al., 2021). They are usually based on
dataset information and do not have a feedback loop from overall per-
formance. Building an automated systematic representation selection
pipeline is currently an open challenge.

Evaluation The computational workflow outcome (e.g., prediction
accuracy) and computational cost are commonly utilized to evaluate
a MOF representation. Recently, there are some extra concerns for
MOF representation that create new challenges for the community. In
particular, a representation should be: (1) invariant in terms of trans-
lation, rotation, and periodicity, reducing the number of symmetries
and increasing the efficiency of the search (for example, the EGNN
representation has recently been investigated as a way to circumvent
some of the drawbacks of standard graph-based representation Satorras
et al., 2021); (2) invertible, which refers to the existence of an inverse
transform from representation to crystal structure, which is critical
for the development of generative models and inverse material design
methods (ideally, a one-to-one mapping of representations and struc-
tures should exist); and (3) interpretable and understandable inasmuch
as, when combined with computational investigations, the represen-
tation should be able to disclose underlying physical principles and
inform experimental studies. Challenges certainly remain in addressing
each above mentioned requirement for MOF representation.
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2.4. Engineering concerns

Comparability When combining and comparing research data from
various sources, it is necessary to integrate, as well as be in position
differentiate, information across databases. Generally, this can be done
with data engineering methods. One current challenge, however, is
how to identify and locate a specific MOF (or set of MOFs) within
databases. This is partly due to the existence of various naming con-
ventions. Dubiously, the material HKUST-1 is also known as CuBTC
and MOF-199 (Sturluson et al., 2019). This creates a number of is-
sues, namely: (1) experimental data cannot be linked to database
structure files automatically; (2) structure and property databases may
not be joined easily; (3) redundant information exists in multiple
databases, creating potential data inconsistencies. A universal MOF
identification scheme that is consistent across literature and databases
may help tackle this challenge. Such schemes already exist for sim-
ple organic compounds. For example, the Simplified Molecular-Input
Line-Entry System (SMILES) (Weininger, 1988) and the more recent
SELF-referencIng Embedded Strings (SELFIES) (Krenn et al., 2020) are
two representation systems that are well-known and widely used, but
they are not perfectly compatible with MOFs because of the extra
complexity and unit cell periodicity. Thus, there is a need to develop a
scheme specific to MOFs. Recently, MOF-compatible identifiers have
been developed such as MOFid/MOFkey (Bucior et al., 2019) and
RFcode (Yao et al., 2021). Challenges remain in semantics design and
ontology engineering to improve the MOF identification methodology.
There also exist challenges to dynamically adapt universal identifiers
to specific applications. We refer the readers to Scheffler et al. (2022)
for a more in-depth discussion on achieving FAIR (findable, accessible,
interoperable and reusable) materials data infrastructures.

Reproducibility Transparency and standardization are keys for
reproducibility of MOFs research data. This goal should be aided by
recent trends towards open-access publications and numerous data
repositories, such as Zenodo (Sicilia et al., 2017), the Computational
Material Repository (Landis et al., 2012), and the Open Science Frame-
work (Foster and Deardorff, 2017). In addition to transparency, the
community needs standardized data generation, storage, and process-
ing methods. To that end, recent advances in databases with built-in
standardized toolkits for computational studies, such as the Materials
Project (Jain et al., 2013) and AFLOWLIB (Curtarolo et al., 2012), will
facilitate the realization of this goal. As for experimental data, digitiz-
ing experimental records, results and metadata in a standardized and
machine-readable format remains a great challenge. It is also crucial to
disclose the findings of unsuccessful experiments and the performances
of poor-performing materials in order to better understand essential
properties like synthesizability. Unfortunately, this practice is far from
the norm when publishing scholarly results.

3. Properties evaluation

Efficient and accurate properties evaluation methods that could
predict/calculate target functions of MOFs from the representation/
descriptors are the key to computational discovery of MOFs. A va-
riety of computational methods have been utilized to calculate MOF
properties, among which the molecular simulation approach is the
most investigated one. Molecular simulation via ab initio quantum
hemistry computations gives relatively accurate predictions. For ex-
mple, Barona et al. (2019) carried out DFT calculations to predict
OF catalysts and the results agreed well with experimental validation.
ut ab initio calculations require significant amount of computational
esources. On the contrary, Monte Carlo or molecular dynamics sim-
lations with classical force-fields are less accurate but much more
fficient, and are thus used more widely in high-throughput stud-
es. The readers are directed to a recent review (Sturluson et al.,
4

019) for detailed discussion on molecular simulation approaches.
Recently, data-driven (e.g., machine learning) approaches have been
widely investigated, given the increasing availability of MOF molecular
simulation tools and the development of MOF property databases.
Machine learning (ML) is very efficient in terms of inference (i.e., pre-
diction) and the community has focused on improving its accuracy
and training cost, among other aspects. Although in this section we
consider data-driven approaches as property evaluators (mostly via
regression-type models), we note that there exist other ways of inte-
grating data-driven technologies. For example, using classification and
regression models to predict synthesizability (Anderson and Gómez-
Gualdrón, 2020; Jang et al., 2020; Park et al., 2022), using generative
models to generate hypothetical structures (Yao et al., 2021; Altin-
tas et al., 2021), and extracting literature information using natural
language models (Tshitoyan et al., 2019; Park et al., 2021) are some
examples. The readers are directed to recent publications (Gu et al.,
2019; Chong et al., 2020; Altintas et al., 2021; Batra et al., 2021;
Rosen et al., 2022) for more details of machine-learned models in
computational MOF discovery. Below, we articulate open challenges
related to the computational evaluation of MOF properties, focusing
on molecular simulation and machine learning methods.

3.1. Molecular simulation

Accuracy Molecular simulations are commonly used for the in silico
evaluation of MOF properties, and most machine learning models use
datasets generated from such simulations. As a result, improving the
accuracy of the molecular simulation methods is critical. Handling the
flexibility of MOFs is currently one of the challenges in improving
simulation accuracy. MOFs are assumed to be rigid in practically all
computational studies in the literature by neglecting bound intramolec-
ular interactions. However, MOFs are indeed flexible, and studies have
demonstrated that this flexibility has a substantial impact on a MOF’s
properties (Sarkisov et al., 2014; Aljammal et al., 2019). For the vast
majority of MOFs in the databases, the effect of removing rigidity
assumptions has not been examined. Besides flexibility, particular in-
stances, such as open metal sites, special functional groups and defects,
are also rarely investigated in the literature. Considering all of those
cases would require significant algorithmic advancements and com-
putational capacity, and that those cases may only be relevant for
a limited subset of MOFs, it may not be practical to design univer-
sal molecular simulation methodologies suitable for all MOFs. While
scientists are surely making improvements in understanding those lim-
itations and developing new technologies, it remains a challenge for
engineers to design automated and systematic strategies for validat-
ing various assumptions and methodologies (e.g., force fields, charge
assignment methods) and selecting the combination with the lowest
computing cost that meets the accuracy requirement.

Efficiency Another key challenge in molecular simulation is to im-
prove its efficiency, as researchers frequently have to trade-off between
accuracy and computational cost in computational discovery studies.
Many studies in the field focus on using machine learning methods
to replace expensive simulations. However, as molecular simulation
is the source of training data in many data-driven method studies,
and data-driven methods generally require a large amount of data, we
would argue that the need to accelerate molecular simulation is even
greater with the advent of machine learning methods. To improve the
efficiency of molecular simulation, the first challenge is to reduce the
time to develop a new force field. Transfer learning approaches have
recently been utilized to construct computationally cheap force fields
that gain knowledge from one system and apply it to another (Smith
et al., 2019). The second challenge is to use the latest technologi-
cal advances in parallel computing hardware and software to speed
up the simulations. Recently, progress has been made in developing
Grand-Canonical Monte Carlo algorithms and density functional theory
algorithms on GPUs (Nejahi et al., 2019; Zhou and Wu, 2020) and

gained orders of magnitudes of speedups.
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3.2. Data-driven machine learning

Generalizability and Transferability One commonplace goal of data-
driven approaches is that the learned models perform well with un-
known data (i.e., generalizability) and/or other problem settings (i.e.,
transferability). To realize generalizability and transferability are es-
pecially of interest to MOF discovery because the vast design space
(i.e., unknown candidates) and many potential applications (e.g., un-
seen problem settings) of MOFs. For the generalizability of MOF prop-
erty prediction models, there are additional factors that need to be
considered beyond testing on validation datasets: (1) databases, which
should be diverse and representative; (2) MOF representation, which
should be effective and capture essential information; (3) MOF prop-
erties, which should fall within expected value ranges and exhibit
enough spread; and (4) machine learning models, which should be effi-
ciently ‘‘overparameterized’’ (i.e., large enough) (Brutzkus and Glober-
son, 2019). Overall, we could argue that a major challenge remains in
systematically diagnosing and fixing the ML model for better general-
ization. In terms of transferability, one aspect is to learn a transferable
representation (e.g., embedding) that may be used for a variety of
tasks. Meta-learning has also been used to predict the properties of
MOFs under various situations (Sun et al., 2021). Inspired by the rapid
development of pre-trained models in other domains of interest to the
ML community (Wolf et al., 2019), it remains a challenge to construct
a generic and transferable pre-trained MOFs model that can be applied
to various applications via re-training with a small number of new data
points.

Working with Limited Data ML models often require a large num-
ber of data points. Creating large datasets of MOF properties and/or
representation can be computationally expensive, and the number of
data points available for challenging properties is sometimes very
limited. This imposes a great challenge for pursuing machine learning
models, as smaller datasets result in worse predictability and poor
generalization of those. As a result, novel machine learning techniques
and methodologies for small datasets have been investigated in the
literature, such as transfer learning (He et al., 2018b; Ma et al., 2020)
(using pre-trained parameters before training the model on the limited
database) and active learning (Xue et al., 2016) (essentially sampling
the training set from the entire database). Another challenge with
limited datasets is the prevalence of missing values, which could come
from failed computations or unreported experimental data. Recently,
the literature has suggested methods such as using a recommendation
system to estimate missing values and address this issue (Sturluson
et al., 2021).

3.3. Engineering concerns

Data Availability The majority of computational discovery studies
in the literature rely on in-house molecular simulation capabilities to
evaluate material properties, and the simulated data is almost never
publicly available. Even when similar data is available, data is fre-
quently re-computed. It is an open challenge to create open MOF prop-
erties databases, which would save computing resources, enable cross-
disciplinary collaboration, and allow different studies to be compared.
Another challenge with data availability is that research reported in
the literature has mostly concentrated on a few number of MOF prop-
erties predominantly related to small molecule adsorption, while other
relevant properties have received less attention. In particular, addi-
tional thermodynamic properties can be important when evaluating
industrial-level gas separation/storage processes, while electronic and
catalytic properties are crucial for energy-related applications, yet those
properties are rarely explored in the literature. We have recently seen
the creation of databases like QMOF (Rosen et al., 2021) that attempt to
address this issue. While various property databases are being created,
5

it would be a challenge for engineers to create a centralized interface to
link and query them. Last but not least, validating computed properties
remains a challenge. The ideal way to validate computational studies is
via experiments. But experimental validations of all computational re-
sults is impractical. Instead, databases of experimental properties could
be used as benchmarks to validate and evaluate computational work-
flows in this context. Selecting and building such robust benchmark
property databases remains a challenge.

Workflow Automation Manual operation makes it hard to repro-
uce results and requires extra time when there is need to extend
he work. Therefore, automation is critical in the reproducibility of
olecular simulation and machine learning studies. Recently, build-

ng software infrastructures to automate various aspects of molecular
imulation and machine learning has become a hot research topic. The
pen Force Field Initiative (Shirts et al., 2019), for example, includes
number of tools for automating molecular simulation, while AutoML

ools have been used to build machine learning models (Borboudakis
t al., 2017). Beyond software infrastructure, there exist challenges in
utomating the whole computational workflow. Here, comprehensive
orkflow manager infrastructures, such as AiiDA (Pizzi et al., 2016)
nd FireWorks (Jain et al., 2015), have recently been built to automate,
anage, persist, distribute, and recreate complicated computational
orkflows. We also remark that computing environment management,
hich includes the computing hardware, operating system, and soft-
are employed, is crucial for the reproducibility of computational
perations and information reported should generally include versions
nd configurations. The development of such environment management
nfrastructure specialized for computational investigations is still a
hallenge. Quantum Mobile virtual machines (Talirz et al., 2020) for
imulation workflows and cloud-based tools like Codeocean (Staubitz
t al., 2016) for machine learning activities are some of the current
vailable options.

. Metrics and search

Conceptually, computational materials discovery is an optimization
roblem aimed at searching the materials design space for the best
andidate with the optimal target functionality. We note that, due to
ncertainties, the candidate can be a cluster/group of structures instead
f a single structure. With the MOF databases, representation, and
roperty evaluation methods in place, a search might be as simple as an
numerative process, where a finite subset of candidates in the design
pace is evaluated and the best gets selected. In fact, much of the field’s
iterature is built on this concept, with high-throughput screening using
variety of datasets, representations, and property evaluation methods.
ome high-throughput screening studies have achieved success in dis-
overing new MOFs – or new usages for MOFs – that already existed but
ad never been applied in the desired context (Moghadam et al., 2018;
oyd et al., 2019). However, the screening strategy generally suffers
rom high computation cost and limited search space.

To that end, systematic search/optimization approaches have been
nvestigated recently. We note that nearly all current Structure–function
elationships (e.g., property evaluators) are considered as black-box
ystems, in which we can see the inputs and outputs but do not have ac-
ess to a mathematical description of the relationship. Accordingly, the
earch methodologies developed to accommodate such relationships
re simulation-based black-box search/sampling algorithms, including
enetic algorithms (Chung et al., 2016), Monte Carlo tree search (Zhang
t al., 2019b), and Bayesian optimization (Deshwal et al., 2021). Such
lack-box algorithms usually necessitate the specification of structure
ransformation rules or surrogate model forms, and if not carefully
esigned, they will require a very high number of data points and
valuation. Moreover, without explicitly understanding and exploring
he underlying physics (i.e., Structure–function relationship), they may
dentify top-performing MOFs but fail to identify the best candidates
i.e., global optimality). Another existing strategy for searching the
esign space is to use generative machine learning models to produce
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new MOF structures with good performance metrics directly, allowing
for the so-called inverse design.

Before applying any search method for computational discovery,
it is critical to choose a proper performance metric/search objective.
For many straightforward applications, search metrics could simply
be material attributes. However, simplistic measurements would not
adequately reflect our goal in many other situations, particularly when
considering MOFs in multi-scale systems and taking more realistic
factors into account. As a result, various functional and hybrid metrics
have been proposed in the literature to address this issue. We refer
the readers to recent publications (Erucar and Keskin, 2018; Leperi
et al., 2019; Farmahini et al., 2021) for a detailed treatment of MOF
performance metrics. In the remainder, we will discuss challenges
related to metrics and search methods.

4.1. Search objectives

Process-Level Information To find the optimum material for a specific
process, one requires process-level information and should ideally aim
to optimize both the process and the material design at the same time.
It has been demonstrated that existing performance metrics, despite
the fact that they frequently allow for the elimination of inferior
materials and may be adequate proxies in idealized cases, do not
provide an accurate ranking of the MOFs (Farmahini et al., 2018).
The reason is that overall process-materials system performance is the
outcome of a complex system with highly coupled materials design
and process design decisions. There is rarely a direct link between
process performance and material properties. Furthermore, measur-
ing the entire process system with a single performance metric is
usually inadequate. Process analog/simplified/surrogate models have
recently been used to evaluate process-level performance in materials
search (Subramanian Balashankar and Rajendran, 2019; Arora et al.,
2020). Combining technical and economic evaluation of the entire
process with the computational discovery workflow is still a challenge.

Cost Another issue with present performance metrics is the lack
of cost objective, which is critical for process development and tech-
nology commercialization, as cost is frequently the deciding factor.
Currently, the cost of uncommercialized MOFs is frequently thought to
be comparable to that of existing materials when, in fact, MOFs have
completely different raw ingredients and manufacturing processes than
typical materials. To further complicate the matter, new technologies
are constantly being developed and need to be reflected on the cost.
As a result, developing costing models for MOFs is an extremely diffi-
cult open challenge. Aside from material costs, determining additional
operational costs, such as regeneration costs, is another issue that
requires a thorough understanding of the entire process. Readers should
refer to recent publications on techno-economic analysis of MOFs-based
adsorption processes (Danaci et al., 2020; DeSantis et al., 2017; Shi
et al., 2021; Severino et al., 2021).

Sustainability Whereas the majority of existing MOF computa-
tional discovery studies focus on MOF functionality and/or perfor-
mance, sustainability studies are largely conducted in parallel and
focus more on assessment and analysis rather than discovery. To that
end, there exist opportunities to incorporate sustainability consider-
ations into the MOF discovery process itself. However, relying on
a computational discovery workflow to identify MOFs that are both
high-performing and sustainable constitutes a great challenge for the
community. We note that sustainability as a high-level concept cannot
be readily described with a simple metric, as multiple factors from
different perspectives need to be taken into consideration. In our view,
some factors that should be considered for evaluating sustainability of
MOFs are: (1) safety and ‘‘greenness’’ of MOF synthesis and production;
(2) energy requirements of and/or savings from the applications en-
abled by MOFs; and (3) environmental, economic and societal impacts
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associated with the complete MOF life cycle. We refer the readers
to reviews discussing sustainability aspects of MOFs (Julien et al.,
2017; Chen et al., 2017; Kumar et al., 2019; Woodliffe et al., 2021;
Faust, 2016; Grande et al., 2017). Besides defining and quantifying
sustainability metrics, it will also be challenging to use those – often
convoluted ones – to guide the materials discovery, which calls for
advanced optimization algorithms.

4.2. Search methods

Optimization In our opinion, a MOF computational discovery method-
ology should be evaluated, at a minimum, along the following dimen-
sions: (1) search efficiency in terms of computational time, number of
evaluations, CPU resource usage, and other related metrics; (2) search
effectiveness in terms of exploration–exploitation trade-off and optimal-
ity gap; (3) scalability with respect to data size and system size; and (4)
flexibility in terms of dependence on specific system and domain knowl-
edge. Currently, systematizing search methodologies for MOF discovery
is still a relatively unexplored research area with studies focusing
mainly on the first two of the aforementioned dimensions. Challenges
exist for advancing along each one of those dimensions as well as for de-
veloping all-rounder methodologies. Another group of challenges arise
from more complex and realistic search objectives, such as those dis-
cussed previously. To accommodate such objectives requires advanced
search techniques, such as multi-objective constrained optimization.
Furthermore, to deal with uncertainties (e.g., data inaccuracy) in the
discovery process, we need to resort to more involved – and generally
less tractable – optimization under uncertainty techniques. Last, but
not least, there exist opportunities and challenges to go beyond cur-
rent simulation-based methodologies and to develop physics-informed
technologies that can help us obtain physical understanding during
the materials discovery process. We refer the readers to recent re-
views (Karniadakis et al., 2021; Peng et al., 2022) discussing the
background and impact of physics-informed computational materials in
general. For MOF discovery specifically, with understanding of the un-
derlying physics, we can formulate and exploit the Structure–function
relationships in glass-box forms and break the inherent limitations
of black-box search. This is intriguing from an optimization perspec-
tive since it allows for the use of rigorous mathematical optimization
procedures. Besides its rigor, mathematical optimization also gives for-
mal methods for dealing with multi-objective optimization problems,
restrictions, and various sources of uncertainty. Thus, it is an open chal-
lenge both to learn physics from and to utilize the physics back into the
materials discovery process. To that end, technologies such as physics-
informed feature engineering, pattern recognition, interpretable ML,
causality inference, symbolic regression and reinforcement learning
could be further investigated and integrated with MOF discovery.

Bridging the Knowledge Gap The computational discovery of
OFs is a complex task that incorporates knowledge and technolo-

ies from a wide range of disciplines. It requires the participation
nd collaboration of materials scientists, computational chemists, data
cientists, machine learning engineers, process engineers, and often
lso software engineers. The knowledge gap that exists between dif-
erent domains presents a great challenge for productive collaboration
n computational discovery/search. For example, despite all improve-
ents in the automation and user interface of molecular simulation

oolkits, process engineers may still find them difficult to access and
tilize. Process modeling and optimization tools, on the other hand,
re not always readily available to the materials science community.
hat is more, the latest machine learning advancements may not

e phrased with notations that is familiar to chemical engineers. In
rder to close the knowledge gap between different fields, it is critical
o make technologies more accessible, user-friendly and automated,
hile also providing enough documentation for each technology. The
evelopment of an all-purpose software program/platform with a user-
riendly interface dedicated to one or more applications is possible
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in the future. This aspired tool would require MOF structures and
process settings as input, and it will output an integrated model for the
material-process-environment system. It could then be linked with an
optimization engine to enable an optimization workflow to recommend
MOF candidates, process design and operating condition, as well as
estimated environmental impacts.

5. Conclusions

Open challenges in computational MOF discovery were summarized
and briefly explored in this study, covering database and represen-
tation, properties evaluation, performance metrics, and search algo-
rithms, among other topics. We should highlight that this review is
written from the perspective of a process engineer, and that it is primar-
ily concerned with engineering challenges. Making the computational
discovery more realistic and reliable, as well as applying the results
in real-world industrial production, is the ultimate challenge for all
participants in the field. Unfortunately, the majority of current research
utilizes highly idealized structures and assumptions, representations
without systematic validations, simplified properties evaluation meth-
ods, performance metrics that are not aligned with process goals, and
heuristic search methods, among other weaknesses. As a result, compu-
tationally discovered MOFs can rarely be synthesized or confirmed to
perform well in the laboratory, let alone make their way to adoption
in real-world applications. Furthermore, many experimentally-proven
top-performing MOFs have never been identified in computational
studies (Taddei and Petit, 2021). Although we are confronted with
significant challenges, it is remarkable to see how quickly this field is
evolving and progressing, with new articles and innovations being in-
troduced on a daily basis. Considering the potential and importance of
computational discovery of MOFs in the future, we are quite optimistic.
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